О развитии логического мышления младших школьников.
Никто не будет спорить с тем, что каждый учитель должен развивать логическое мышление учащихся. Об этом говорится в методической литературе, в объяснительных записках к учебным программам. И роль математики в развитии логического мышления исключительно велика.
Причина столь исключительной роли математики в том, что это самая теоретическая наука из всех изучаемых в школе. В ней высокий уровень абстракции и в ней наиболее естественным способом изложения знаний является способ восхождения от абстрактного к конкретному. Как показывает опыт, в младшем школьном возрасте одним из эффективных способов развития мышления является решение школьниками нестандартных логических задач.
Кроме того, решение нестандартных логических задач способно привить
интерес ребенка к изучению «классической» математики. В этом отношении весьма характерен следующий пример. Крупнейший математик современности, создатель московской математической школы, академик Николай Николаевич Лузин, будучи гимназистом, получал по математике сплошные двойки. Учитель прямо сказал родителям Н.Н. Лузина, что их сын в математике безнадежен, что он туп и, что вряд ли он сможет учиться в гимназии. Родители наняли репетитора, с помощью которого мальчик еле-еле перешел в следующий класс. Однако репетитор этот оказался человеком умным и проницательным. Он заметил невероятную вещь: мальчик не умел решать простые, примитивные
задачи, но у него иногда вдруг получались задачи нестандартные, гораздо
более сложные и трудные. Он воспользовался этим и сумел заинтересовать математикой этого, казалось бы, бездарного мальчика. Благодаря такому творческому подходу педагога из мальчика впоследствии вышел ученый с мировым именем, не только много сделавший для математики, но и создавший крупнейшую советскую математическую школу.
Главная задача обучения математике, причем с самого начала, с первого класса, - учить рассуждать, учить мыслить.
Систематическое использование на уроках математики и внеурочных занятиях специальных задач и заданий, направленных на развитие логического мышления, расширяет математический кругозор младших школьников и позволяет более уверенно ориентироваться в простейших закономерностях окружающей их действительности и активнее использовать математические знания в повседневной жизни.
Вот несколько задач из книги И.Г. Сухина "800 новых логических и
математических головоломок".
СЮЖЕТНЫЕ ЗАДАЧИ
1. Гном Путалка идёт к клетке с тигром. Каждый раз, когда он делает два
шага вперёд, тигр рычит, и гном отступает на шаг назад. За какое время он
дойдёт до клетки, если до неё 5 шагов, а 1 шаг Путалка делает за 1 секунду?
2. Гном Забывалка учился писать цифры заострённой палочкой на песке. Только он успел нарисовать 5 цифр:
12345
как увидел большую собаку, испугался и убежал. Вскоре в это место пришёл другой гном Путалка. Он тоже взял палочку и начертил вот что:
12345 = 60
Вставь между цифрами плюсы таким образом, что получившийся пример был решён правильно.
3. Сколько лет сиднем просидел на печи Илья Муромец? Известно, что если бы он просидел ещё 2 раза по столько, то его возраст составил бы наибольшее двузначное число.
5. Барон Мюнхгаузен пересчитал число волшебных волос в бороде старика Хоттабыча. Оно оказалось равным сумме наименьшего трёхзначного числа и наибольшего двузначного. Что это за число?
6. Раздели самое маленькое четырёхзначное число на наименьшее простое и узнаешь, сколько лет не умывалась и не чистила зубы злая волшебница Гингема из повести-сказки А. Волкова "Волшебник Изумрудного города".
Подобные задачи можно решать не только на уроке математики в школе, но и дома, собравшись всей семьёй и устроив , например, «Турнир смекалистых». Видя интерес родителей к таким заданиям, младшие школьники не только будут учиться решать логические задачи, но и радоваться общению с самыми близкими , но часто , к сожалению , очень занятыми людьми – с родителями.
Материал для сайта подготовила Н.С.Тишкина